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Abstract-Synthesis is the process of taking a description of a hardware design, typically in the form of an HDL (hardware 

description language), and transforming that description to a gate-level representation. The process of Synthesis includes 
Boolean reduction techniques that can reduce the number of gates required to implement the design. Reduction of gates in 
the final product can mean less area on the die as well as reduced power consumption - both desirable effects. Formal 
techniques can look at the functional behavior of an HDL design and rigorously prove how that HDL design truly operates 
– with a model for its valid stimulus. This paper employs novel Formal techniques to identify logic that may be removed 
through analysis of the functional operation of the design. The novel part of this approach is to not only do Formal Coverage 
Analysis of a design. But, that through this approach, it is possible to do rapid design experiments to see if certain 
architectural decisions can result in a reduction in synthesized gates, area and power. It may become apparent that certain 
features of a design account for outsized numbers of gates to implement. After finding these outsized design features, this 
novel process innately contains a semi-automated process to precisely remove specific design features from the RTL or 
from the gate-level netlist. 

 

I.   INTRODUCTION 
Synthesis is the process of taking a description of a hardware design, typically in the form of an HDL (hardware 

description language) and transforming that description to a gate-level representation. The process of Synthesis 
includes Boolean reduction techniques that can reduce the number of gates required to implement the design. 
Reduction of gates in the final product can mean less area on the die as well as reduced power consumption - both 
desirable effects. 

The typical way that gates can be safely removed during Synthesis is through constant propagation whereby the 
external inputs to the design may be tied to either logic-high (set_logic_high as used in the Synopsys synthesis 
tool) or logic-low (set_logic_zero). The Synthesis tool assumes that those inputs are static and Boolean reduction 
techniques can be used to remove unreachable logic. However, constant propagation cannot consider interactions of 
input signals that have more complicated relationships. 

Formal Analysis of a design is a deep and multi-faceted topic. It includes the traditional concept of using Formal to 
create proofs of certain custom properties created by the user to prove functional correctness. There are, however, 
more specialized applications of Formal Analysis such as FCA (Formal Coverage Analysis). FCA is a technique that 
allows for proving the reachability of the different types of Code Coverage of a design such as: Line, Toggle and 
more. 

FCA can, most simply, identify if a line of an HDL is reachable dependent on how the input stimulus is constrained. 
What you may be sensing is the trajectory between FCA and Synthesis. FCA has a crucial and elegant advantage over 
Synthesis: FCA has the advantage of the SystemVerilog “assume”. 

The examples used in this paper are available on the GitHub project “Formal Synthesis” below. Type “make help” 
to learn more once downloaded. 

 
 

 
https://github.com/tenthousandfailures/formal_synthesis 
 

  



 
 

 

II.   APPROACH 
By using FCA and providing the required SystemVerilog [4] “assume” statements to model the DUT (Design 

Under Test) input stimulus, it is possible to model the relationships of the stimulus that the design will see under 
functional operation. These “assume”(s) are the same that are used for Formal Analysis. Since we can exhaustively, 
and confidently, use FCA to see what logic is unreachable dependent on our stimulus, modeled through the 
SystemVerilog “assume” statement, we can create reports for the simple case of what Lines of our design HDL are 
unreachable. 

Unreachable lines of our HDL may be removed – and with that removal comes the reduction in gates we are seeking. 
In this paper’s most basic application, simply running FCA and commenting out lines of HDL that are unreachable 
can result in reduction of gates, before or after Synthesis, in a way that retains functionality and matches what the 
stimulus constraints given. 

The process is continued by analyzing toggle analysis with FCA. It was chosen to use FCA toggle analysis on the 
synthesized netlist resultant from the first step (Synthesis 1 in Figure 1). The reasoning behind doing this analysis at 
the synthesized netlist is shared during the Results section. Internal and external points in the design that cannot toggle 
may be tied to logic-1 or logic-0 in the synthesized netlist. Then Synthesis may be run again on the synthesized netlist 
to arrive at the final optimized design as in Figure 1. 

 

 
 
 

Figure 1. Optimization Flow Chart with Formal 
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III.   RESULTS 
The first application of this technique for illustration is using the TinyAlu [2] that is featured in Ray Salemi’s book 

“The UVM Primer” [1] which has its HDL available on GitHub [5]. The TinyAlu has a SystemVerilog implementation 
that is synthesizable1 and represents an ALU (Arithmetic Logic Unit) that does single-cycle operations such as: 
bitwise-and, addition and bitwise-xor. It can also do a three-cycle operation of multiply. The block diagram for the 
TinyAlu is in Figure 2. 

 

 
Figure 2. Block Diagram of TinyAlu 

 

This paper is accompanied by examples and a Makefile to run though the examples. The first Makefile target we 
will use is: 

 

 
make tinyalu 
 

 
Figure 3. Provided Makefile Target tinyalu 

 
which will launch a Formal tool with the setup required to run FCA analysis on the TinyAlu design. This design comes 
with many provided stimulus assume statements that can be toggled on or off to do different design analysis. 

 
1 With minor modifications from the original and provided with the paper. 

tinyalu
A[7:0]

B[7:0]

op[2:0]

start

clk

reset_n

result[15:0]
done

three_cycle mult

single_cycle and_add_xor



 
 

 
 

Figure 4. Formal FCA Analysis Shows that All Line(s) of Code Are Reachable on module three_cycle 

 

When we run FCA on this design it shows all Lines of the design are reachable (100%) in Figure 4 with all of the 
user defined stimulus assumes disabled. This means that there is not anything in the design that can be removed – at 
least from the simple standpoint of FCA Line Coverage with no assumes. 

The single-cycle operations and multi-cycle operations of the ALU are provided in Table 1. 
 

Table 1. Operand Commands (edited from original) 
Operand Value bit[2] bit[1] bit[0] 
OP_NULL 3’h0 0 0 0 
OP_MULT 3’h1 0 0 1 
OP_AND 3’h2 0 1 0 
OP_ADD 3’h3 0 1 1 
OP_XOR 3’h4 1 0 0 

 
We may know, from the context of how this module is used or from a request to reduce gate count, that we will not 

be doing any of the multiply (OP_MULT) operations for this design application. A design requirement change is a 
common occurrence in design teams. Changing requirements and schedule pressure can be manifested in design 
changes that need to be implemented. Luckily, we can apply a SystemVerilog “assume” on the design to constrain 
the inputs to say that we will not accept, and not operate correctly when, the operand “OP_MULT” (multiply) is given. 
We can describe this condition simply with the SystemVerilog “assume” statement in Figure 5. 

 
 
always @(*) begin 
 only_single_cycle_ops : assume (op != OP_MULT); 
end 
 

 
Figure 5. SystemVerilog assume Statement Applied to disable the OP_MULT operand from tinyalu/tinyalu_sva.sv 

 
  



 
 

With “only_single_cycle_ops” assume active and then running FCA Line analysis, we can see the results 
reported by the Formal Tool showing what RTL Lines could be removed based on the functional behavior in Figure 
6. 

 

 
 

Figure 6. FCA Showing Lines in Red from the Multiplier which Are No Longer Reachable 
 
The red lines represent unreachable Lines in Figure 6 can be removed by hand or through post-processing of the 
Formal analysis. Simply commenting these red lines would result in the removal of a multiplier “*” that would 
otherwise be Synthesized along with many other logical signals. Formal applications can give a picture of the design 
complexity which can give rough numbers of what Synthesis may look like through a Complexity Report in Figure 7 
shows the removal of the MULTIPLY after the Formal suggested code edits. 
  



 
 

 
 

 
 

Figure 7. Formal Design Complexity Showing Removal of the (1) “MULTIPLY” after Commenting the HDL 
 
The Formal Design Complexity report is a feature of the Formal tool Synopsys VC Formal, but does not give us an 

exact number of how many gates would be saved or what types. Provided with the source code are the Makefile targets  
 

 
make tinyalu_synthesis 
make tinyalu_synthesis_ex1 
 

 
Figure 8 Makefile targets for synthesis comparison 

 
that will synthesize our TinyAlu design into the target gate technology of lsi_10k for demonstration purposes. We can 
then compare the results of doing this change in Table 2. 

 
Table 2. Synthesis Results 

Design Cells 
Combinational 
Cells 

Sequential 
Cells 

Total Cell 
Area 

Original RTL (synthesis) 520 439 78 1377 

Removed Multiplier Lines RTL (synthesis_ex1) 127 115 10 244 

Improvement over Original RTL 4.1x 3.8x 7.8x 5.6x 
 

 
The removal of the unreachable lines resulted in the synthesis tool choosing to completely remove the module 

“three_cycle” from the synthesized netlist. The cell gains were large in this example because the number of cells 
required to implement a multiplier is high in relation to the rest of the design. Can you go farther than just Line 
coverage? In fact, you can!  



 
 

We can now use FCA to analyze the synthesized netlist and compare the toggle coverage before and after reapplying 
our same “only_single_cycle_ops” assume statement. We get an interesting result whereby there is one toggle 
that was made unreachable by the inclusion of the assume. 

The reason why we are interested in the difference is because we want to focus on FCA toggle differences caused 
solely by the addition of stimulus assume statements. Unreachability analysis is a highly understood process and extant 
unreachable components should be handled with existing methods. 

 

 
 

Figure 9. Toggle coverage made unreachable by applying “only_single_cycle_ops” 
 

When we investigate what this condition is, we can see that the netlist wire “n60” is driven by the following logic 
from the ND2 (NAND) in Figure 10 and Figure 11. 

 
 
single_cycle and_add_xor ( .A(A), .B(B), .op(op), .clk(clk), .reset_n( 
        reset_n), .start(start_single), .done(done_aax), .result({ 
        SYNOPSYS_UNCONNECTED_1, SYNOPSYS_UNCONNECTED_2, SYNOPSYS_UNCONNECTED_3,  
        SYNOPSYS_UNCONNECTED_4, SYNOPSYS_UNCONNECTED_5, SYNOPSYS_UNCONNECTED_6,  
        SYNOPSYS_UNCONNECTED_7, result_aax}) );  
 
  NR2 U59 ( .A(op[2]), .B(op[1]), .Z(n63) ); 
  ND2 U60 ( .A(op[0]), .B(n63), .Z(n60) ); 
… 
  AN2P U61 ( .A(done_aax), .B(n60), .Z(done) ); 
  AN2P U62 ( .A(result_aax[0]), .B(n60), .Z(result[0]) ); 
  AN2P U63 ( .A(result_aax[1]), .B(n60), .Z(result[1]) ); 
  AN2P U64 ( .A(result_aax[2]), .B(n60), .Z(result[2]) ); 
 

 
Figure 10. and_add_xor synthesized netlist excerpt 

 
Then that signal “n60” is used to drive the result_aax (the output of the and_add_xor) onto its output ports 
(result[0]). 

 
 
  NR2 U59 ( .A(op[2]), .B(op[1]), .Z(n63) ); 
  ND2 U60 ( .A(op[0]), .B(n63), .Z(n60) ); 
 

 
Figure 11. Logical Expansion of drivers of net n63 

 
  



 
 

 

 
Figure 12. Netlist to Logical Schematic Representation 

 
 

 
 
op[2] || op[1] || !op[0] 
OP_MULT = 3’h1 = 3’b001 
 

 
Figure 13. Sum of Products Form of Logical Schematic Representation Compared to Value of OP_MULT 

 
Which is only zero for only one input condition, as simplified in Figure 12 and Figure 13, the OP_MULT condition 

3’b001! The Synthesis tool doesn’t know that OP_MULT is a forbidden stimulus and cannot optimize this operand 
away completely even if the MULT module has been stripped from the design, it keeps this conditional logic in the 
design. Yet Formal, which has the ability to model the more complicated input assumes, can correctly identify this 
extra logic from the netlist and tells us how to fix it. 

In Figure 14 is the edit done to the synthesized netlist postulated by FCA toggle. We change the driver of n60 from 
the output of a ND2 (NAND) to be driven by a constant. This step is done by hand in this example for educational 
purposes. The true implementation does not have the user hand editing a netlist. All of the information to make this 
edit existed in the Formal FCA Toggle analysis and can be automated. So the end user will never make this hand edit, 
but instead run some type of automation to implement this edit through an ECO (electronic change order) file 
generated by the Formal tool. 
 
 
 // BEFORE 
 // ND2 U60 ( .A(op[0]), .B(n63), .Z(n60) ); 
 
 // AFTER assign n60 to constant 
 assign n60 = 1'b1;6 
    

 
Figure 14. Edit to synthesized netlist based of FCA toggle 

   
Making the above edit to the synthesized netlist and then rerunning synthesis on the edited synthesis netlist results in 
the following improved results in Table 3. 

 
Table 3. Synthesis Results with Toggle Removal 

Design Cells 
Combinational 
Cells 

Sequential 
Cells 

Total Cell 
Area 

Original RTL 520 439 78 1377 

Removed Multiplier Lines RTL 127 115 10 244 

Improvement over Original RTL 4.09x 3.82 7.80 5.64 

Above with Toggle Removal 103 91 10 196 

Improvement with Toggle Removal 5.05x 4.82 7.80 7.03 
 

  

NOR
NAND

op[2]
op[1] n63

op[0] n60

op[2] || op[1] || !op[0]

As written in Sum of Products Form

OP_MULT = 3'h1 = 3'b001



 
 

How does one assign statement remove 24 cells from the design? It is because Synthesis engines are remarkable at 
reducing Boolean logic. Giving the Synthesis engine one hint can trim tremendous cones of logic. But, as we are 
describing in this paper, Synthesis engines do not have a robust input stimulus description language such as 
SystemVerilog assertions and the assume statement to guide them. 

You may ask what was the logic in the original RTL that was involved with the now unreachable toggle? It was 
from the line below in Figure 15. 

 
 
 
 assign result = (op == OP_MULT) ? result_mult :  result_aax; 
 

 
Figure 15. Stranded assign statement created by assume on stimulus from tinyalu/tinyalu.sv 

 
Notice that Synthesis cannot optimize out the operand OP_MULT from possible input stimulus, so this line of RTL 
in Figure 15 must remain active in the synthesized design according to the Synthesis tool. But if we assume that this 
op can never be OP_MULT, then this result can be simplified using this method! 

There is an obvious question why the author didn’t run FCA toggle analysis on the RTL instead of the first 
synthesized netlist (Synthesis 1 from Figure 2)? The answer is that RTL is a high-level design language and the way 
it describes RTL is quite abstract. RTL optimization described by FCA toggle analysis is generally harder to recode 
into readable RTL. But FCA toggle analysis targets are trivial when described at the netlist level because we are 
looking at individual busses and FCA can truly be set loose to analyze the design at the bit-level optimizations instead 
of at high levels of abstraction. The end result from using the netlist is easier ECOs to implement, instead of creating 
a system to automatically write correct and human-readable SystemVerilog, and more cells that can be removed at the 
netlist bit-level instead of high level RTL. 

Another fair question is why not do the FCA Line and all coverage analysis at the synthesized netlist? One 
immediate problem with doing FCA Line analysis on a synthesized netlist is there are no longer any lines to analyze 
in synthesis netlist. A synthesis netlist is a sea of interconnected gates and there is no longer the concept of lines for 
FCA to work on. There are other features of the proposed flow you would miss if you did all analysis at the synthesized 
netlist level. For example, while our stimulus assumes were only applied to the ports of our TinyAlu, it is also possible 
to do stimulus assumes inside of the DUT. Those assumes require consistent hierarchy and signal names to operate. 
In the synthesized netlist those signal names may be bit-blasted away and no longer suitable for stimulus assumes. 
Running at least the first FCA Line analysis with the RTL allows for those assumes to be properly applied. 

Where could you go from here? The demonstrated optimization was from one assume statement. But many assumes 
can be layered and contrasted for deeper insight into the cost of design elements and architectures. Below are some 
examples in Figure 16. These examples demonstrate the major application of the paper, lowering the barrier to reduce 
logic by constraining the inputs in ways that might not be possible with constant propagation. In your Formal software 
it is often possible to enable and disable assume statements from the GUI or TCL interface. Using this interface, you 
could start with combinations of assume statements below or be able to mix in combinations programmatically. 
  



 
 

 
 
 
always @(*) begin 
 only_single_cycle_ops : assume (op != OP_MULT); 
 only_even_input_A : assume (!(A[0])); 
 only_even_input_B : assume (!(B[0])); 
end 
 
always @(*) begin 
 only_mult_ops : assume (op == OP_MULT); 
 only_odd_input_A : assume (A[0]); 
 only_odd_input_B : assume (B[0]); 
 
always @(*) begin 
 only_add_ops : assume (op == OP_ADD); 
 only_xor_ops : assume (op == OP_XOR); 
 only_and_ops : assume (op == OP_AND); 
end 
 

 
Figure 16. Mix and Match assumes for more reduction from tinyalu/tinyalu_sva.sv 

 
IV.   SUMMARY 

FCA analysis is a known technique for searching for dead code in a design. The novel part of this approach is to not 
only do FCA analysis of a design. But, to consider that it is possible to do design experiments to see if certain 
architectural and usage constraints can result in a reduction of synthesized gates, area and/or power. It may become 
apparent that certain features of a design or even acceptance of certain stimulus patterns account for outsized numbers 
of gates to implement. After finding these outsized design features, this novel process innately contains a semi-
automated process to precisely remove specific design features.  

It was shown that this process could correctly remove an operand completely from an ALU design when used in 
conjunction with a synthesis tool resulting in a cell reduction of 5x. The process described can be automated. The 
approach made choices to get to the result in the form of a synthesized netlist instead of trying to rewrite the source 
RTL for reasons described in Results. 

The conventional approach to removal of logic is to rely heavily on parameters or SystemVerilog defines embedded 
by the designers into the RTL. The process of parameterizing the design to add or remove features is error prone. This 
paper proposes that removing features could be handled by this process in a way that is just as safe and perhaps exceeds 
what a designer could implement themselves. 

Imagine if a design came with a menu, not unlike a restaurant menu, that listed the feature and then the gates cost 
next to it. That could lead to incredible optimization of inflight and reuse derivative designs as each feature can easily 
- at any time in the design cycle - be removed and weighed, in gates, per their value to their application. 

 
V. FUTURE WORK 

 
While this paper looked deeply at the impact of Line and Toggle coverage, there are other code coverage 

optimizations that can be analyzed with FCA that may yield interesting optimizations beyond what is published here: 
perhaps conditional analysis could be easily used? 

Since we are removing functionality from the design, we absolutely need to protect the design from receiving illegal 
stimulus. This would best be handled by retaining the assume statements used for restricting stimulus and pushing 
those out as assertions that upstream elements can never drive illegal stimulus. What we have created through this 
process is hollowed out design that does not work if it receives illegal stimulus. There is interesting work in hardening 
a design to reject or accept illegal stimulus after the optimizations in this paper have been applied. 
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