
Can Formal Outsmart Synthesis:
Improving Synthesis Quality of

Results through Formal Methods
Eldon Nelson M.S. P.E.

Synopsys, Inc.

Outline

• What is Synthesis?
• What is Formal Coverage Analysis?
• Use Case
• Overview of our Example Design tinyalu
• Method
• Results
• Summary

RTL and Gates

RTL Gates

RTL and Gates

RTL
(SystemVerilog)

Gates
(Gate Level Netlist)

RTL and Gates

RTL Gates

What is Synthesis

RTL Gates

What is Synthesis

Constant Propagation
in Synthesis

RTL Gates
set_logic_high

Constant Propagation
in Synthesis

set_logic_high

Synthesis engines can do simple constant
propagation such as:

set_logic_high and set_logic_zero

complex relationships in combinatorial
or sequential logic is not supported

Formal Coverage Analysis

• Doing Formal Coverage analysis on a design to see if each
• Line / Toggle is reachable in the design with certain stimulus

• Can take into the advantage of the SystemVerilog “assume” statement
• “assume” statement can describe complicated stimulus behavior elegantly
• “assume” is not readable by Synthesis engines

Current RTL Customization
Techniques

• `ifdef
• Parameters
• Generates

Problem
– Increasingly hard for designers to create parameterized designs with high

efficiency using these techniques
– Optimizations not pursued for simplicity of code readability
– Side effects and inefficiencies of interacting Parameters and `ifdef

Parameter and Define Overload

• Combinations of parameters and `defines must all be considered
• Burden to validate and plan combinations of all parameters and all `define

Feature Cost

• How do we gauge how much a design feature costs?
– what if we only give even numbers to the integer adder in the design?
– what if we do not allow for two memory operations to certain address back

to back?
– how many gates could we save if if we removed an operand?

Why? Changing Requirements
and Deep Optimizations

• Deep optimization of a design for a particular application is a value add
reducing power and gate number (area)

• Requirements change that would require a design to add parameters or `ifdef
to a completed design

• A request to reduce gate count
• What features of a design contribute the most to gate count quantitively?

tinyalu
A[7:0]

B[7:0]

op[2:0]

start

clk

reset_n

result[15:0]
done

three_cycle mult

single_cycle and_add_xor

tinyalu (our example DUT)

Operand Value bit[2] bit[1] bit[0]

OP_NULL 3’h0 0 0 0

OP_MULT 3’h1 0 0 1

OP_AND 3’h2 0 1 0

OP_ADD 3’h3 0 1 1

OP_XOR 3’h4 1 0 0

Operand Table for tinyalu

Operand Value bit[2] bit[1] bit[0]

OP_NULL 3’h0 0 0 0

OP_MULT 3’h1 0 0 1

OP_AND 3’h2 0 1 0

OP_ADD 3’h3 0 1 1

OP_XOR 3’h4 1 0 0
Constant Propagation with set_logic_high or

set_logic_zero doesn’t work here

Operand Table for tinyalu

always @(*) begin
only_single_cycle_ops : assume (op != OP_MULT);

end

Remove OP_MULT

https://github.com/tenthousandfailures/formal_synthesis

> make tinyalu

Start Formal

Formal analysis shows in green “reachable”

lines of RTL

100% of this module is reachable

After running Formal analysis

WITH stimulus assumes we can see that

line 115 (red) is no longer reachable

Comment VC Formal

unreachable lines in RTL

(see tinyalu.sv.nomult)

> make tinyalu_synthesis
> make tinyalu_synthesis_ex1

Run Synthesis

Design Cells
Combinational
Cells

Sequential
Cells

Total Cell
Area

Original RTL (synthesis) 520 439 78 1377

Removed Multiplier Lines RTL (synthesis_ex1) 127 115 10 244

Improvement over Original RTL 4.1x 3.8x 7.8x 5.6x

Optimizations versus Cell Count

Running Toggle Analysis on the
Synthesized Netlist from

Synthesis 1 with Assumes

// BEFORE
// ND2 U60 (.A(op[0]), .B(n63), .Z(n60));

// AFTER assign n60 to constant
assign n60 = 1'b1;

Edit Gate Level Netlist with Input
from Formal Coverage Analysis

// BEFORE
// ND2 U60 (.A(op[0]), .B(n63), .Z(n60));

// AFTER assign n60 to constant
assign n60 = 1'b1;

Edit Gate Level Netlist with Input
from Formal Coverage Analysis

For more details on proof with

this example see Paper

> make tinyalu_synthesis_ex2

Run Synthesis

Design Cells Combinational Cells Sequential Cells Total Cell Area

Original RTL (synthesis) 520 439 78 1377

Removed Multiplier Lines RTL
(synthesis_ex1) 127 115 10 244

Improvement over Original RTL 4.09x 3.82 7.80 5.64

Above with Toggle Removal
(synthesis_ex2) 103 91 10 196

Improvement with Toggle
Removal 5.05x 4.82 7.80 7.03

Optimizations versus Cell Count

Why Line Coverage with RTL?
• Line coverage with RTL is done because it is easy to automate adding

comments RTL
• All signals names are still available at with original RTL

• Easy to write assumes deep in design and at ports

Why Not Line Coverage with Gates?

• Line coverage does not exist in a gate level netlist!
• Gate level netlists do not ensure signal names remain

• Assumes may no longer be valid or have access to internal signals

Why Toggle with Gates?
• Toggle coverage with Gate Level netlists because it is easy to automate
• Rewriting RTL is complicated

• Would likely result in unreadable code
• Imagine how breaking of arrays and reconnecting them in SystemVerilog at the

bit level
• Toggle at the gate level can reveal deeper optimizations at the bit level

instead of RTL which thinks about full arrays at a time

Usage Warning
• Removing functionality from the DUT with this method means that the design

will have undetermined / invalid behavior for certain stimulus

• In our example, we asserted that there will never be a OP_MULT stimulus
• If you send in an OP_MULT the behavior will now be unknown

Assumes to Asserts
• Pushing the assumes to asserts at higher levels of integration to maintain the

functionality of the optimized design
• Need to guarantee that the optimized gate netlists will never encounter

stimulus that are explicitly forbidden (assumes)

Summary
• This paper describes a method to use allowed stimulus of a DUT to optimize

the implementation of the synthesized gate level netlist
• Methodology can be automated because of deliberate decisions

• Quickly create a table for how different features or even stimulus patterns in
sequential time can effect the implementation in terms of gates needed to
implement

Future Work
• There are other types of code coverage analysis not used in this flow

• Notably, condition coverage which may yield more optimization possibilities
• Refining the scripting to implement this flow
• Future products

Thank you and Questions

