NNNNNNNNNNNNNNNNNNNNNNN

~ Can Formal Outsmart Synthesis:
Improving Synthesis Quality of
Results through Formal Methods

Eldon Nelson M.S. P.E.
Synopsys, Inc.

IIIIIIIIIIIIIIIII

2021 .
VIS a1 Outline

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* What is Synthesis?

* What is Formal Coverage Analysis?
* Use Case

* Overview of our Example Design tinyalu
* Method
* Results

* Summary

SYSTEMS INITIATIVE

2021
VIS T RTL and Gates

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

SYSTEMS INITIATIVE

2021
VIS T RTL and Gates

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

RTL Gates

(SystemVerilog) (Gate Level Netlist)

SYSTEMS INITIATIVE

2021
VIS T RTL and Gates

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

module single_cycle (module single cycle (A, B, op, clk, reset n, start, done, result);
input [7:0] A, input [7:0] A;
input [7:0] B, input [7:0] B;
input [2:0] op, input [2:0] op;
input clk, output [15:0] result;
input reset n, input clk, reset_n, start;
input start, output done;

wire N67, n56, n57, n58, n59, n6@, n6l, n62, n63, n64, nl, n2, n3, n4, n5,

output logic ~ done, n6, n7, n8, n9, nle, nll, n12, n13, nl4, nl5, nl6, nl7, n18, nl9, n20,
_ output logic [15:@] result n21, n22, n23, n24, n25, n26, n27, n28, n29, n30, n3l, n32, n33, n34,
)i n35, n36, n37, n38, n39, n40, n4l, n42, n43, nd44, nd45, nd6, nd7, n4s,
n49, n50, n51, n52, n53, n54, n55, n65, n66, n67, n68, n69, n70, n7l,
always @(posedge clk) begin n72, n73, n74, n75, n76, n77, n78, n79, n80, n8l, n82, n83, n84, ns5,
if (!reset_n) begin n86, n87, n88, n89, n90, n91, n92, n93, n9%4, n95, n96, n97, n98, n99,
result <= '0; nl00;
end else begin
case(op) FD1 result reg 8 (.D(n64), .CP(clk), .Q(result[8]), .QN(nlE@));
OP_ADD : result <= A + B; Egi FESU{E_reg_;_ 2 gznggg g;’:c{t; -ggresug{;}; ;;
. _ . result reg 6 (.D(n62), .CP(clk), .Q(resu ;
g:—igg :::E}E := 2 E gf FD1 result reg 5 (.D(n61), .CP(clk), .Q(result[5]));
d - ' ' FD1 result reg 4 (.D(n6@), .CP(clk), .Q(result[4]));
endcase // case (op) FD1 result reg 3 (.D(n59), .CP(clk), .Q(result[3]));
end FD1 result reg 2 (.D(n58), .CP(clk), .Q(result[2]));
acce era end FD1 result reg 1 (.D(n57), .CP(clk), .Q(result[1]));

SYSTEMS INITIATIVE

2021 : _
S AVinTa N What is Synthesis

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

module single_cycle (module single cycle (A, B, op, clk, reset n, start, done, result);
input [7:0] A, input [7:0] A;
input [7:0] B, input [7:0] B;
input [2:0] op, input [2:0] op;
input clk, output [15:0] result;
input reset n, input clk, reset_n, start;
input start, output done;

wire N67, n56, n57, n58, n59, n6@, n6l, n62, n63, n64, nl, n2, n3, n4, n5,

output logic - done, né, n7, ng, n9, nio, nil, ni2, nl3, nl4, ni5, nl6, nl7, nl8, nl9, n20,
_ output logic [15:0] result n21, n22, n23, n24, n25, n26, n27, n28, n29, n30, n3l, n32, n33, n34,
): n35, n36, n37, n38, n39, nd40, ndl, nd2, nd43, ndd, nd5, nd6, nd7, n4d8,
n49, n50, n51, n52, n53, n54, n55, n65, n66, n67, n68, n69, n70, n71,
always @(posedge clk) begin n72, n73, n74, n75, n76, n77, n78, n79, n80, n8l, n82, n83, n84, n85,
if (!reset_n) begin n86, n87, n88, n89, n90, n91, n92, n93, n9%4, n95, n96, n97, n98, n99,
result <= '0; nlee;
end else begin
case(op) FD1 result reg 8 (.D(n64), .CP(clk), .Q(result[8]), .QN(nlE@));
OP _ADD : result <= A + B; Egi resug_reg_g_ 2 ggnggg gg:c{llg .ggresug{;” ;;
. - . result reg 6 (.D(n62), .CP(clk), .Q(resu ;
g::_Qgg :::E}E := i E gf FD1 result reg 5 (.D(n6l), .CP(clk), .Q(result[5]));
d — ' ! FD1 result reg 4 (.D(n60), .CP(clk), .Q(result([4]));
endcase // case (op) FD1 result_reg 3 (.D(n59), .CP(clk), .Q(result[3]));
end FD1 result reg 2 (.D(n58), .CP(clk), .Q(result[2]));
acce era end FD1 result reg 1 (.D(n57), .CP(clk), .Q(result[1]));

SYSTEMS INITIATIVE

2021 : _
S AVinTa What is Synthesis

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

module single_cycle (module single cycle (A, B, op, clk, reset n, start, done, result);
input [7:0] A, input [7:0] A;
input [7:0] B, input [7:0] B;
input [2:0] op, input [2:0] op;
input clk, output [15:0] result;
input reset n, input clk, reset_n, start;
. . output done;
1nput , start, wire N67, n56, n57, n58, n59, n6@, n6l, n62, n63, n64, nl, n2, n3, nd, n5,
output logic done, n6é, n7, n8, n9, nl@, nll, nl2, nl3, nl4, nl5, nl6, nl7, nl8, nl9, n20,
output logic [15:0] result n21, n22, n23, n24, n25, n26, n27, n28, n29, n30, n31, n32, n33, n34,
); n35, n36, n37, n38, n39, n40, n4l, nd42, nd43, nd44, nd5, nd6, nd7, n4d8,
n49, n50, n51, n52, n53, n54, n55, n65, n66, n67, n68, n69, n70, n7l,
always @(pnsedge clk) begin n72, n73, n74, n75, n76, n77, n78, n79, n80, n81, n82, n83, n84, n85,
if (!reset n) begin n86,ln87, n88, n89, n9%, n91, n92, n93, n94, n95, n96, n97, n98, n99,
result <= '0; n1e0;
end else begin FD1 result reg 8 (.D(n64), .CP(clk), .Q(result[8]), .QN(n1€0));
case(op) FD1 result reg 7 (.D(n63), .CP(clk), .Q(result[7]));
OP_ADD : result <= A + B; FD1 result reg 6 (.D(n62), .CP(clk), .Q(result[6]));
OP AND : result <= A & B; FD1 result reg 5 (.D(n6l), .CP(clk), .Q(result[5]));
OP XOR : result <= A ~ B; FD1 result reg 4 (.D(n60), .CP(clk), .Q(result[4]));
endcase // case (op) FD1 result reg 3 (.D(n59), .CP(clk), .Q(result([3]));
- end FD1 result reg 2 (.D(n58), .CP(clk), .Q(result[2]));
dClend FD1 result reg 1 (.D(n57), .CP(clk), .Q(result[1]));

SYSTEMS INITIATIVE

2021 Constant Propagation

DESIGN AND VERIFICATION™

DVCON in Synthesis

NNNNNNNNNNNNNNNNNNNNNNN

set_logic_high # #
RTL Gates

SYSTEMS INITIATIVE

2021 Constant Propagation

DESIGN AND VERIFICATION™

DVCOMN in Synthesis

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

Synthesis engines can do simple constant

Propagation such as

set_logic_high and set_logic_zero

complex relationships in combinatorial
or sequential logic is not supported

SYSTEMS INITIATIVE

2021 I
=reciior Formal Coverage Analysis

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Doing Formal Coverage analysis on a design to see if each
* Line / Toggle is reachable in the design with certain stimulus
* Can take into the advantage of the SystemVerilog “assume” statement
* "assume” statement can describe complicated stimulus behavior elegantly
* “assume” is not readable by Synthesis engines

SYSTEMS INITIATIVE

2021 Current RTL Customization

DESIGN AND VERIFICATIONT

DV Techniques

CONFERENCE AND EXHIBITION

e Parameters
e Generates

Problem

— Increasingly hard for designers to create parameterized designs with high
efficiency using these techniques

— Optimizations not pursued for simplicity of code readability
— Side effects and inefficiencies of interacting Parameters and “ifdef

SYSTEMS INITIATIVE

2021 :
=reserer Parameter and Define Overload

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Combinations of parameters and defines must all be considered
* Burden to validate and plan combinations of all parameters and all "define

SYSTEMS INITIATIVE

2021
crscu e nticte, Feature Cost

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* How do we gauge how much a design feature costs?
— what if we only give even numbers to the integer adder in the design?

— what if we do not allow for two memory operations to certain address back
to back?

— how many gates could we save if if we removed an operand?

SYSTEMS INITIATIVE

2021 Why? Changing Requirements

DESIGN AND VERIFICATION™

DV and Deep Optimizations

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Deep optimization of a design for a particular application is a value add
reducing power and gate number (area)

* Requirements change that would require a design to add parameters or “ifdef
to a completed design

* Arequest to reduce gate count
* What features of a design contribute the most to gate count quantitively?

SYSTEMS INITIATIVE

tinyalu (our example DUT)

tinyalu

—> A[7:0]
—> B[7:0]
> op[2:0]
— > start

—> clk
—> reset_n

single_cycle and_add_xor

three_cycle mult

result[15:0]

done

=
-

Operand Table for tinyalu

0 0

OP_NULL 3h0 0

OP_MULT 3h1 0 0 1
OP_AND 3h2 0 1 0
OP_ADD 3h3 0 1 1

OP_XOR 3ha 1 0 0

Operand Table for tinyalu

OP_NULL 3’6h0 O

e ----

OP_AND 3’h2 O

OP_ADD 3h3 0 1 1
OP_XOR 3ha 1

DV LN Remove OP MULT

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

always @ (*) begin
only single cycle ops : assume (op != OP MULT);
end

SYSTEMS INITIATIVE

& tenthousandfailures [formal_synthesis

<> Code (1) Issues 1) Pull requests (*) Actions

¥ main ~ Go to file

j tenthousandfailures add in external copy of repo

[0 pattern add in external copy of repo
tinyalu add in external copy of repo

[LICENSE Initial commit

3 Makefile add in external copy of repo

[README.md add in external copy of repo

README.md

Can Formal Outsmart Synthesis: Improving Synthesis Quality of Results through

Formal Methods
These are the examples for the pap

The examples are:

tinyalu
pattern

https:llgithub.co

®Unwatch v 1 Y7 Star 0 % Fork 0
[1] Projects 77 Wiki () Security [~ Insights

27 daysago 2

27 days ago
27 days ago
27 days ago
27 days ago

27 days ago

7

mitenthous

No description, website, or
topics provided.

J Readme

&8 GPL-3.0 License

Releases

No releases published
Create a new release

Packages

is
andfai\ureslforma_synthem

SystemVerilog 41.7%
Tcl 33.3%

® Makefile 14.4%

© Shell 10.6%

DESIGN AND VE%FIOC%ILN ™
DVC DN Start Formal

NNNNNNNNNNNNNNNNNNNNNNN

VIRTUAL | MARCH 1-4, 2021

> make tinyalu

SYSTEMS INITIATIVE

CovSrc.l: tinyalu.mult &

<All= =]@[_Iformal_synthesis[tinyaluftinyalu.sv "

86 &
878 module thres_cycle (
88 input [7:0] &,
89 input [7:0] E,
90 input [2:0] op,
91 input clk,
92 input reset_n,
93 input start,
94 output logic done,
95 output logic [15:0] result
96 |)i
97
98 | logic [7:0] a_int, b_int;
99 |logic [15:0] maltl, multz;
100 |logic donsl, donez, dons3;
101
102 |always @ (posedgs clk)
if (lreset_n) begin
o 104 dons <= 1"b0;
< 105 done3 <= 1'b0;
< 106 dons2 <= 1'b0;
o 107 donsl <= 1"'b0;
< 108 a_int <= "0;
< 109 b_int == '0;
< 110 multl <= "0;
< 111 multz <= "0;
o 112 result<= '0;
113 end slse begin
& 114 if (start) begin
o & 115 a_int <= A;
o 116 b_int <= B;
o & 117 multl <= a_int * b_int;
o & 118 mult2 <= multl;
o & 119 result <= mult2;
o & 120 done3 <= start & !done;
oo 121 done2 <= dons3 & !done;
o & 122 donel <= done2 & !done;
ooF 123 done <= donel & !done;
124 end
125 end
128
127 |endmodulse @ three_cycle
128

Formal Code Coverage
Analysis

Design —>

v

|dentify Unreachable
Lines caused by
assumes

Y

Comment Unreachable Desian Stimulus
—P> RTL Lines —>> (ed teg d) assume
created by assumes statements

v

Design Synthesis —P>

Synthesized
Netlist

ZovSrc.l: tinyalu.mult &0
=All= =]_'fnn‘naI_synthesisitinyalu.ftinyalu.svH

878 module thres_cycle | s

88 input [7:0] A&,

89 input [7:0] E,

a0 input [2:0] op,

91 input iy

92 input reset_n,

93 input start,

94 output logic done,

95 output logic [15:0] result

96 |)i

97

98 |logic [7:0] a_int, b_int;

99 |logic [15:0] multl, maltz;

100 |logic donel, dons2, dones3;

101

102 always @ (possdge clk)
if (!reset_n) begirn

< 104 done <= 1'b0;
& 105 done3 <= 1'b0;
& 106 done2 <= 1'b0;
o 107 donel <= 1'b0;
< 108 a_int <= "0;
& 109 b_int <= "0;
< 110 multl <= "0;
o 111 mult2 <= "0;
o 112 result<= "0;

113 end else begin
oo 114 if (start) begin
o 115
o 116
& 117
& 118
o 119
o 120
o 121
o 122
o 123

124 and

125 end

126

127 |endmodule : three_cycle

128

CovSrc.l: tinyalu.mult

done2, dons3;

<All> :]
878 module thres_cycle |
88 input [T:0]
89 input [T:0]
90 input [2:0]
91 input
92 input
93 input
94 output logic
95 output logic [15:0] re
96 (J);
97
98 |logic [7:0] a_int, b_int;
99 |logic [15:0] mualtl, maltz;
100 | logic donesl,
101
102 always @ (possdge clk)
ENECER if (!resst_n) begir]
< 104 donse <= 1'b0;
< 105 done3 <= 1'b0;
< 106 done2 <= 1'b0;
o 107 donel <= 1'b0;
[e 108 a_int == '0;
< 109 b_int <= '0;
< 110 multl == "0;
< 111 mult2 <= '0;
o 112 result<= "0;
113 end else begin
oo 114 if (start) begin
< 115
< 11e
< 117
< 118
< 119
< 120
& 121
o 122
o 123
124 end
A1 end
128

127
128

endmodule : thres_cycle

logic [7:0] a_int, b int;
logic [15:0] multl, mult2;
logic donel,

always @(posedge clk)
if (!reset n) begin
done <= 1'b0;
done3 <= 1'b0;
done2 <= 1'b0;
donel <= 1'b0;
a int <= '0;

b int <= '0;
multl <= '0;
mult2 <= '0;

result<= '0;
end else begin
if (start) begin

done2, done3;

// VC FORMAL EXCLUDED LINES

// a_int
// b int
// multl
// mult2
// result
// done3
// done2
// donel
// done

end
end

<=
<=
<=
<=
<=
<=
<=
<=
<=

A;

B;
a_int *
multl;
mult2;
start &
done3 &
done2 &
donel &

b int;

Idone;
Idone;
Idone;
Idone;

2021

DESIGN AND VERIFICATION™

DVLCON

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

SYSTEMS INITIATIVE

Run Synthesis

> make tinyalu synthesis
> make tinyalu synthesis exl

Optimizations versus Cell Count

Combinational |Sequential Total Cell
Cells Cells Cells Area

Original RTL (synthesis) - 439 78 1377

Removed Multiplier Lines RTL (synthesis_ex1) 127 115 10 244

Improvement over Original RTL 4.1x 3.8x 7.8x 5.6x

Y

Comment Unreachable

RTL Lines (ngtf(;‘)
created by assumes
* |
, , Synthesized
Design Synthesis Netlist

v

Formal Code Coverage
Analysis

v

|dentify Unreachable
Toggles caused by
assumes

Use assign or
tie up/down on nets that
cannot toggle

| D

<

-

=

Stimulus CDD-
assume 23

statements w
—h
0p)

<

. -
Synthesized =
> Netlist Design Synthesis D
(edited) 25

0p)
v N
Optimized
Synthesized
Netlist 1

Y

Comment Unreachable

RTL Lines (ngtf(;‘)
created by assumes
* |
, , Synthesized
Design Synthesis Netlist

v

Formal Code Coverage
Analysis

v

|dentify Unreachable
Toggles caused by
assumes

Use assign or
tie up/down on nets that
cannot toggle

| D

<<

-

=

Stimulus CDD-
assume 23

statements w
—h
0p)

<<

. -
Synthesized =
> Netlist Design Synthesis D
(edited) 25

0p)
v N
Optimized
Synthesized
Netlist 1

Running Toggle Analysis on the
Synthesized Netlist from
Synthesis 1 with Assumes

VWCFGoallist

Verification Targets: ALL
type engine toggle_signal | toggle_transition

el ni&0 1-=0

memoad2] Edit Gate Level Netlist with Input

DN S5 from Formal Coverage Analysis

// BEFORE &

// ND2 U60 (.A(op[0]), .B(n63), .Z(n60));

// AFTER assign n60 to constant
assign n60 = 1'bl;

SYSTEMS INITIATIVE

oozt EAIt Gate Level Netlist with Input

RDNYZEUSS from Formal Coverage Analysis

VIRTUAL | MARCH 1-4, 2021
// BEFORE ~

// ND2 U60 (.A(op[0]), .B(n63), .Z(n60));

// AFTER assign n60 to constant
assign n60 = 1'bl;

e details on proof with

For mor

this example se€ Paper

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DVICOIN

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

SYSTEMS INITIATIVE

Run Synthesis

> make tinyalu synthesis ex2

Optimizations versus Cell Count

_ Combinational Cells | Sequential Cells |Total Cell Area

520 439 78 1377

Original RTL (syntheS|s)

Removed Multiplier Lines RTL
synthesis ex1 115 10 244

Improvement over Original RTL X0E) 3.82 7.80 5.64
Above with Toggle Removal
(synthesis_ex2) -

91 10 196

Improvement with Toggle
Removal 5.05x 4.82 7.80 7.03

Design

> Formal Code Coverage

Analysis

v

Identify Unreachable
Lines caused by
assumes

—
I

Comment Unreachable Desian Stimulus
—> RTL Lines (edi teg d) assume
created by assumes statements
Design Synthesis 47/ Syn’\tlzﬁztzed /
Formal Code Coverage <
Analysis
Identify Unreachable Use assign or Synthesized
Toggles caused by tie up/down on nets that —» Netlist Design Synthesis
assumes cannot toggle (edited)

v

Optimized
Synthesized
Netlist

| SISOYUAS

2 SIsayluAg

2021

DESIGN AND VERIFICATION™

DvC O~ Why Line Coverage with RTL?

VIRTUAL | MARCH 1-4, 2021

* Line coverage with RTL is done because it is easy to automate adding
comments RTL

* All signals names are still available at with original RTL
* Easy to write assumes deep in design and at ports

SYSTEMS INITIATIVE

2021

DVC N Why Not Line Coverage with Gates?

CONFERENCE AND EXHIBITION

VIRTUAL | MARCH 1-4, 2021

* Line coverage does not exist in a gate level netlist!

* Gate level netlists do not ensure signal names remain
* Assumes may no longer be valid or have access to internal signals

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DVCOIN Why Toggle with Gates?

VIRTUAL | MARCH 1- 4, 2021

* Toggle coverage with Gate Level netlists because it is easy to automate

* Rewriting RTL is complicated
* Would likely result in unreadable code

* Imagine how breaking of arrays and reconnecting them in SystemVerilog at the
bit level

* Toggle at the gate level can reveal deeper optimizations at the bit level
instead of RTL which thinks about full arrays at a time

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

SAATATAN Usage Warning

VIRTUAL | MARCH 1-4, 2021

* Removing functionality from the DUT with this method means that the design
will have undetermined / invalid behavior for certain stimulus

* In our example, we asserted that there will never be a OP_MULT stimulus
* If you send in an OP_MULT the behavior will now be unknown

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV O Assumes to Asserts

VIRTUAL | MARCH 1-4, 2021

* Pushing the assumes to asserts at higher levels of integration to maintain the
functionality of the optimized design

* Need to guarantee that the optimized gate netlists will never encounter
stimulus that are explicitly forbidden (assumes)

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DVEON Summary

VIRTUAL | MARCH 1-4, 2021

* This paper describes a method to use allowed stimulus of a DUT to optimize
the implementation of the synthesized gate level netlist

* Methodology can be automated because of deliberate decisions

* Quickly create a table for how different features or even stimulus patterns in
sequential time can effect the implementation in terms of gates needed to
Implement

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DV O Future Work

VIRTUAL | MARCH 1-4, 2021

* There are other types of code coverage analysis not used in this flow
* Notably, condition coverage which may yield more optimization possibilities

* Refining the scripting to implement this flow
* Future products

SYSTEMS INITIATIVE

2021

DESIGN AND VERIFICATION™

DVLCON

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Thank you and Questions

