Owning a Tesla Going Electric

January 28 ${ }^{\text {th }}, 2019$
Rochester, MN

Outline

- Who am I
- Tesla Models
- Energy Refresher and Costs
- Theft Rate
- Tesla Supercharger Network
- Side Effects
- Maintenance

Intro for Eldon

- B.S. and M.S. at the UMN Twin Cities in Electrical Engineering
- Licensed Professional Engineer P.E. - Minnesota \#47894
- Current Chair of IEEE Twin Cities Section 2019
- Verification Application Engineer at Synopsys
- Blog https://tenthousandfailures.com
- 6 Published Papers in Verification

Intro for Eldon

- Commutes about 200 miles round trip 3 times a week from Rochester to the Twin Cities / elsewhere
- Playing a lot of Blizzard's Overwatch lately

Plug for IEEE Twin Cities Banquet

Feb $23^{\text {rd }}$
At St. Thomas

2 SPEAKERS

Phil Magney of VSI Labs
Topic: Autonomous Vehicles
Biography:
Founder \& Principal Advisor
am passionate about the technologies for automated driving. Outside the office I race Porsches and hold a Central Division title in SCCA VSI Lab.
Established in 2014 by Phil Magney, VS
Labs provides industry with deep insight and analysis on the enabling Labs provides industry with deep insight and analysis on the enabing considered one of the industry's top advisors by supporting R\&D and planning departments within major automotive companies and suppliers worldwide.

My New Car History

My New Car History

2005
Toyota Corolla 29 mpg

2012
Toyota Prius
48 mpg

2018
Tesla Model S
102 mpge

Tesla Model 3
\$35k to \$64k

Tesla Model X
\$75k \$97k to \$128k

Tesla Model S \$69k \$85k to \$123k

Table 1: New Vehicle Sales BMW of North America, LLC, December 2018

	Dec-18	Dec-17	\%	$\begin{aligned} & \text { Total } \\ & 2018 \end{aligned}$	$\begin{aligned} & \text { Total } \\ & 2017 \end{aligned}$	\%
i3	356	672	-47\%	6,117	6,276	-2.5\%
i8	97	80	21\%	772	488	58.2\%
2 Series	718	1,188	-39.6\%	9,208	11,737	-21.5\%
3 Series	3,184	5,556	-42.7\%	44,578	59,449	-25.0\%
4 Series	1,916	3,411	-43.8\%	31,379	39,634	-20.8\%
5 Series	4,756	4,743	0.3\%	43,937	40,658	8.1\%
6 Series	330	369	-10.6\%	3,762	3,355	12.1\%
7 Series	983	1,107	-11.2\%	8,271	9,276	-10.8\%
8 Series	223	0	0.0\%	223	0	0.0\%
Z4	0	0	0.0\%	4	502	-99.2\%
X1	3,411	4,454	-23.4\%	29,060	30,826	-5.7\%
X2	1,454	0	0.0\%	16,154	0	0.0\%
BMW passenger cars	17,428	21,580	-19.20\%	193,465	202,201	-4.3\%

BMW X2 below (X3 through X6 are classified as light trucks per BMW)

Tesla Model 3 versus BMW North America

EV Model	January	February	March	April	May	June	July	August	September	October	November	December	2018 TOTAL
BMW i3	382	623	992	503	424	580	464	1.013	461	424	490	356	6,712
Chevy Bolt (est.)	1,177	1,424	1,774	1,275	1,125	1,083	1,100	1,400	1,449	1,775	2,071	2,366	18,019
Ford Focus Electric	73	70	137	83	88	50	46	7	4		1		559
Honda Clarity EV	203	104	48	7	37	126	112	29	59	68	69	86	948
Jaguar I-PACE										5	165	223	393
Nissan LEAF	150	895	1,500	1,171	1,576	1,367	1,149	1,315	1,563	1,234	1,128	1,667	14,715
Tesla Model 3 (est.)	2,400	3,030	2,750	4,777	7,600	4,063	13,500	17,000	24,040	17,000	18,000	25,570	139,730
Tesla Model S (est.)	2,300	2,000	2,430	2,200	2,500	2,530	2,100	2,500	3,400	2,100	2,500	3,100	29,660
Tesla Model X (est.)	2,200	1,930	2,040	2,200	2,300	2,570	2,300	2,400	2,300	2,200	2,550	3,300	28,290
Volkswagen e-Golf	178	198	164	128	76	32	18	32	14	62	230	222	1,354
100\% Electric Total	9,063	10,274	11,835	12,344	15,726	12,401	20,789	25,696	33,290	24,868	27,204	36,890	240,380

- Tesla Model 3 alone was selling every month as much or more as all of BMW passenger (3/5/7 more) cars in North America since August 2018

All Battery Electric Vehicles for 2018

EV Model	Q4 2018	Q4 2017	\% Change	YTD 2018	YTD 2017	\% Change
BMW i3	1,270	1,641	-22.6%	6,712	6,458	3.9%
Chevy Bolt	6,212	8,995	-30.9%	18,019	23,971	-24.8%
Ford Focus Electric	1	349	-99.7%	559	1,796	-68.9%
Honda Clarity EV	223			948		
Jaguar I-PACE	393			393		
Nissan LEAF	4,029	490	722.2%	14,715	10,289	43.0%
Tesla Model 3	60,570	1,550	3807.7%	139,730	1,872	7364.2%
Tesla Model S	7,700	$\mathbf{7 , 6 0 0}$	1.3%	29,660	31,942	$-\mathbf{- 7 . 1 \%}$
Tesla Model X	8,050	7,200	11.8%	$\mathbf{2 8 , 2 9 0}$	$\mathbf{2 4 , 5 7 6}$	15.1%
Volkswagen e-Golf	514	835	-38.4%	$\mathbf{1 , 3 5 4}$	3,420	-60.4%
$\mathbf{1 0 0 \%}$ Electric Total	$\mathbf{8 8 , 9 6 2}$	$\mathbf{2 8 , 6 6 0}$	$\mathbf{2 1 0 . 4 \%}$	$\mathbf{2 4 0 , 3 8 0}$	$\mathbf{1 0 4 , 3 2 4}$	$\mathbf{1 3 0 . 4 \%}$

Chevy Volt Discontinued Mar 2019 Chevy Bolt lives on

Model 3 vs Chevy Bolt

Energy Refresher

Newton	$: N$
Joule	$: N \cdot m$
Watt	$: \frac{N \cdot m}{s}$
KWatt Hour $:$	$1000 \cdot \frac{N \cdot m}{S} \cdot 3600$ (3600 seconds in hour)
	or 3.6 MJ (Mega Joule)

Lifting a 2-liter of pop (2 kg) 1 m is 20 Joules

Practical Example

- A Tesla Model S 100D contains a 100 kWh Battery
- This is equivalent to

$$
100 \cdot 3.6 \mathrm{MJ}=360 \mathrm{MJ}
$$

Practical Example

－A Tesla Model S 100D contains a 100 kWh Battery

－This is equivalent to
$100 \cdot 3.6 \mathrm{MJ}=360 \mathrm{MJ}$
WolframAlpha＝
energy to lift 2200 kg 16697 meters
圈 国
三 Browse Examples $\quad x$ Surprise Me
－gravitational acceleration： 19

What is your Home Energy Usage

- How much electricity does an American home use?
- In 2016, the average annual electricity consumption for a U.S. residential utility customer was 10,766 kilowatthours (kWh), an average of 897 kWh per month. Louisiana had the highest annual electricity consumption at $14,881 \mathrm{kWh}$ per residential customer as of Hawaii had the lowest at $6,061 \mathrm{kWh}$ per residential
the official U.S. government source for fuel economy information
Find a Car Save Money \& Fuel Benefits My MPG Advanced Cars \& Fuels About EPA Ratings More \mathbf{Q}

All-Electric Vehicles

All-electric vehicles (EVs) run on electricity only. They are propelled by one or more electric motors powered by rechargeable battery packs. EVs have several advantages over conventional vehicles:

- Energy efficient. EVs convert about $59 \%-62 \%$ of the electrical energy from the grid to power at the wheels. Conventional gasoline vehicles only convert about $17 \%-21 \%$ of the energy stored in gasoline to power at the wheels. ${ }^{*}$

Also In This Section...

Compare Side by Side

About Electrics

New and Upcoming Vehicles Links

Related Topics...

59\% efficiency from grid to wheels for EV -> 79\% efficiency from battery to wheels
17% efficiency from gas to wheels for gasoline
79% versus 17% is $4.6 x$ more efficient motor and drivetrain

334 kWh in 10 gallons of gas -> 260 miles of range in Toyota Avalon $1280 \mathrm{~Wh} / \mathrm{mi}$ (using rated 26 MPG)

Versus

100 kWh in a Tesla Model S 100D -> 335 miles of range 299 Wh/mi
4.3x energy efficiency difference

I travelled 233.8 Miles and used 62.5 kWh which results in an efficiency of $268 \mathrm{~Wh} / \mathrm{mi}$

I've averaged $270 \mathrm{~Wh} / \mathrm{mi}$ for over the last 5600 miles

(equivalent to getting 370 mile range)

It is possible to get better highway energy use by driving a bit slower (65 mph vs 73) and drafting semis - Rochester to Edina 454 mile rang if you drove like that

Model year	Model	EPA highway dyno score at 48.3 mph	Advertised EPA rated range	$\begin{array}{r} \text { At } 55 \\ \text { mph } \end{array}$	At 60 mph	$\begin{array}{r} \text { At } 65 \\ \text { mph } \end{array}$	At 70 mph	At 75 mph	At 80 mph
2018	Model S 100D 19"	455.4 mi	335 mi	396	365	336	308	284	259
2018	Model 3 LR, 18 " -aero	454.7 mi	310 mi	395	365	336	307	283	259
2018	Model 3 LR, 18" +aero	474.7 mi	310 mi	413	381	350	321	296	270

Power to overcoming aerodynamic drag goes by the cube of speed
2.5 x drag at 75 mph vs 55 mph 40% more range at 55 mph than at 75 mph

Cold Weather 10F

- In 10F weather over 124 mile trip
- Almost all highway Roch to Twin Cities
- Still able to get $306 \mathrm{~Wh} / \mathrm{mi}$

Car rated for EPA estimates at $300 \mathrm{~Wh} / \mathrm{mi}$

Trips

SHOW IN INSTRUMENT PANEL	DISTANCE	DURATION	AVG. ENERGY
\checkmark Current Trip	90.7 mi	$1: 31 \mathrm{hr}$	$272 \mathrm{wh} / \mathrm{mu}$

SHOW IN INSTRUMENT PANEL.

DISTANCE	TOTAL ENERGY	AVG. EnERGY
90.7 mi	24.6 kWh	$272 \mathrm{~Wh} / \mathrm{mi}$
124.5 mi	38.1 kWh	$306 \mathrm{Wm} / \mathrm{mi}$
$4,449.3 \mathrm{mi}$	$1,572.8 \mathrm{kWn}$	$353 \mathrm{~Wh} / \mathrm{mil}$
$22,607.0 \mathrm{mi}$		

Even Colder Jan 19 (0 F)

- In 0 F for driving a city miles with constant heater
- All within Rochester
- $541 \mathrm{~Wh} / \mathrm{mi}$ over 30 mile average
- $421 \mathrm{~Wh} /$ mi over 05 mile average
- Worst case, you would get 184 miles ($541 \mathrm{~Wh} / \mathrm{mi}$) on a Tesla Model S versus 335 EPA

Owning an Electric Vehicle in Minnesota

- Use heated seats! Much more efficient and some other benefits
- Preheat the car in the garage - plus bonus
- Keep your charging cable in your car in case you need it or to top off at relatives house
- Want more range just go a little slower
- 40% more range at 55 mph than at 75 mph

US Mileage by Age and Gender

Average Annual Miles per Driver by Age Group

Age	Male	Female	Total
16-19	8,206	6,873	7,624
20-34	17.976	12,004	15,098
35-54	18,858	11,464	15,291
55-64	15,859	7,780	11,972
$65+$	10,304	4.785	7.646
Average	16.550	10,142	13,476

Back to ONH page

ICE Car Fuel Cost Calculation

Miles Per Year	30000	
Gas Cost Per Gallon	$\$ 2.76$	Gas Buddy Minnesota 09/08 : \$3.23 Premium
Miles Per Gallon	26	Toyota Avalon Combined mpg
Cost Per Year	$\$ 3185$	

$$
\frac{\text { Miles Per Year }}{\text { Miles per Gallon }} \times \text { Cost of Gas }
$$

Electric Vehicle Fuel Cost Calculation

Miles per Year	30000	
Cost per kWh	$\$ 0.10$	Rochester Standard Rate
Charge Efficiency	80%	From Electrical Mains to Battery (1.25)
wh per mile	300	Tesla Model S
KWh Consumed	8640	8.6 Mwh!
Cost per Year	$\$ 1125$	

$$
\begin{gathered}
\text { Kwh Consumed }=\frac{(\text { Miles per Year } \times \text { wh per Mile })}{1000 \times \text { Cost per } k W h} \times 1.25 \\
\text { Cost per Year }=k W h \text { Consumed } \times \text { Cost per } k W h
\end{gathered}
$$

Fuel Cost Comparison

\$3185 ICE vs. \$1125 Electric \$2060 a year (2.83x less)

Savings Over 10 Years of Ownership

Toyota Avalon $(26 \mathrm{mpg})$	$\$ 20600$
Ford F150 4WD $(19 \mathrm{mpg})$	$\$ 32330$
BMW 7 Series $(23 \mathrm{mpg})$ *premium	$\$ 30880$

Fuel Cost Comparison

\$3185 ICE vs. \$1125 Electric \$2060 a year (2.83x less)

Savings Over 10 Years of Ownership

Toyota Avalon $(26 \mathrm{mpg})$	$\$ 20600$
Ford F150 4WD $(19 \mathrm{mpg})$	$\$ 32330$
BMW 7 Series $(23 \mathrm{mpg})$ *premium	$\$ 30880$

Fuel Cost Comparison

2018 F-150 XLT

\$3185 ICE vs. $\$ 1125$ Electric \$2060 a year (2.83x less)

Savings Over 10 Years of Ownership

Toyota Avalon $(26 \mathrm{mpg})$	$\$ 20600$
Ford F150 4WD $(19 \mathrm{mpg})$	$\$ 32330$
BMW 7 Series $(23 \mathrm{mpg})$ *premium	$\$ 30880$

Fuel Cost Comparison

\$3185 ICE vs. \$1125 Electric \$2060 a year (2.83x less)

FYI Xcel in the Twin Cities has off-peak EV charging of 5 cents versus Rochester 10 cents.

Over 10 years that is an extra $\$ 5625$ saved beyond the below!

Savings Over 10 Years of Ownership

Toyota Avalon $(26 \mathrm{mpg})$	$\$ 20600$
Ford F150 4WD $(19 \mathrm{mpg})$	$\$ 32330$
BMW 7 Series $(23 \mathrm{mpg})$ *premium	$\$ 30880$

Theft Rate of Tesla

- 2016 Recovery Rate 100\% for Teslas
- 2016 Recovery Rate 58.4\% for all Vehicles

Good luck trying to steal a Tesla
"I'm wondering if the thieves' intellect might have been overwhelmed just sitting in a Tesla, much less figuring out how to operate it for any length of time."

Frank Scafidi
Director of Public Affairs at the
National Insurance Crime Bureau

Home Charging

How Much to Install a Tesla Wall Connector $\$ 50$ to $\$ 1500$

Charging Estimator

200 miles
Type of Travel
Charging Option(s)
\square Roadtrip
11.5 kW

Charge times are approximate. Charge cost assumes national average of $\$ 0.12$ per kilowatt hour. Gasoline savings assumes 21 mpg .

Charging Estimator

Type of Travel
Charging Option(s)

Wall Connector 11.5 kW

Charge times are approximate. Charge cost assumes national average of $\$ 0.12$ per kilowatt hour. Gasoline savings assumes 21 mpg .

Charging Estimator

Distance Driven

(1) \square

200 miles
Type of Travel
Charging Option(s)

Roadtrip
11.5 kW

[^0]
Tesla Supercharger Network

(4)

```
Oak Grove
```

Elk River ..- Nowthen

Bloomington, MN

Coming Soon

Target opening in 2018

Exact timing and specific location may vary

Mobile Service is available in this area. Details

Dallas

TEXAS
Austin

Houston

\qquad
San Antonio

Quebec City NEW

PRINCE
EDWARD ISLAND

NOVA SCOTIA

City	Drive to Time	Charge Time
Coralville, IA	3 h 15 m	60 min
St. Charles, MO	2 h 41 m	60 min
Kuttawa, KY	2 h 21 m	40 min
Manchester, TN	1 h 48 m	60 min
Atlanta, GA	2 h 10 m	40 min
Trifton, GA	2 h 9 m	25 min
TOTAL	15 h 24 m	4 h 45 m

$3.25 x$ time spent traveling vs charging

maybe 1 h drive time lost in the CST to EST time, but too lazy to figure that out

X 100D kW Charge power as a function of $\operatorname{SoC}(\%)$

Just like your phone, it charges quickly at low battery and slower at high battery

Side Effects 1 of 2

- Appreciation for Car Detailing
- Car Vibration and Car Noise of even the Prius Annoys Me Now
- Don't Notice or Care About Gas Prices

Chemical Guys

05,335 subscribers

Make Your Exhaust Shine Like A Mirror!

How To Make Exhaust Tips Shine! - Chemical Guys Ball Buste
Chemical Ouyn 0 11k Chemical Ouys O 11 K views + 1 day ago
Ghautt bips are exposed to extreme ternperatures, roasd grime, rosd sat, watec cor passek and scratcobes from improper cloaning. Detaling extaust tips is eatay if you fo

Uploads PLAY ALL

Side Effects 2 of 2

- Tesla Autopilot Does Reduce Mental Drain of Highway Driving
- Subscription to Audio Book Service Audible.com

Maintenance

	Year 1 12,500 miles	$\begin{gathered} \text { Year } 2 \\ 25,000 \text { miles } \end{gathered}$	$\begin{gathered} \text { Year } 3 \\ 37,500 \text { miles } \end{gathered}$	$\begin{gathered} \text { Year } 4 \\ 50,000 \text { miles } \end{gathered}$
A/C desiccant bag replacement		X		X
Brake fluid replacement		X		X
Cabin air filter replacement		X		X
Key fob battery replacement (set)	X	X	X	X
Multi-point inspection	X	X	X	X
Tire rotation (if needed)	X	X	X	X
Wheel alignment check (and adjustment, if needed)	X	X	X	X
Wiper blade set replacement	X	X	X	X
Battery coolant replacement	Every 8 years or 100,000 miles (160,000 km), whichever comes first			

Maintenance (Simplified)

	Year 1 12,500 miles	$\begin{gathered} \text { Year } 2 \\ 25,000 \text { miles } \end{gathered}$	$\begin{gathered} \text { Year } 3 \\ 37,500 \text { miles } \end{gathered}$	$\begin{gathered} \text { Year } 4 \\ 50,000 \text { miles } \end{gathered}$
Brake fluid replacement		X		X
Battery coolant replacement	Every 8 years or 100,000 miles (160,000 km), whichever comes first			

Battery Maintenance

- Keep charge between 90% and 10\% for daily use
- Ideally between 80% and 20%
- But, it probably doesn't matter much
- Charge to 100% sparingly for trips
- Don't Supercharge Excessively

Thank You and Questions

References Here

https://docs.google.com/document/d/1GJOLLVTeuh3cJ5s45mfBtROUAbLffkSctiF1JRz7g-8/edit?usp=sharing

[^0]: Charge times are approximate. Charge cost assumes national average of $\$ 0.12$ per kilowatt hour. Gasoline savings assumes 21 mpg

